Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Intervalo de año
1.
Sustainability ; 14(21):14382, 2022.
Artículo en Inglés | MDPI | ID: covidwho-2099797

RESUMEN

During the COVID-19 pandemic, fresh live broadcasting has been widely present in consumers' daily lives but has been scarcely examined in academic research. The major purpose of the current study is to examine how fresh live broadcast features (visibility, interactivity, and authenticity) impact consumers' willingness to buy through consumers' perceived value and perceived trust based on the stimulus–organism-response theory. A total of 307 Chinese webcast users participated in this study. The data were collected through an online questionnaire survey and analyzed by SPSS and Amos software. The findings discovered that the fresh live broadcast features positively impact consumers' perceived utility value and trust, and the visibility and interactivity enhance the perceived hedonistic value of consumers. Moreover, perceived value and perceived trust mediate between fresh live broadcast features and consumers' willingness to buy. This study emphasizes the important role of fresh live features and provides insight for fresh sellers to increase consumer willingness to buy based on the perspective of consumers' perceived value and trust.

2.
researchsquare; 2022.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1391934.v1

RESUMEN

Background The outbreak of SARS-CoV-2 continues to pose a serious threat to human health and social. The ongoing pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a serious threat to public health and economic stability worldwide. Given the urgency of the situation, researchers are attempting to repurpose existing drugs for treating COVID-19.Methods We first established an anti-coronavirus drug screening platform based on the Homogeneous Time Resolved Fluorescence (HTRF) technology and the interaction between the coronavirus S protein and its host receptor ACE2. Two compound libraries of 2,864 molecules were screened with this platform. Selected candidate compounds were validated by SARS-CoV-2_S pseudotyped lentivirus and ACE2-overexpressing cell system. Molecular docking was used to analyze the interaction between S-protein and compounds.Results We identified three potential anti-coronavirus compounds: tannic acid (TA), TS-1276 (anthraquinone), and TS-984 (9-Methoxycanthin-6-one). Our in vitro validation experiments indicated that TS-984 strongly inhibits the interaction of the coronavirus S-protein and the human cell ACE2 receptor. Additionally, tannic acid showed moderate inhibitory effect on the interaction of S-protein and ACE2.Conclusion This platform is a rapid, sensitive, specific, and high throughput system, and available for screening large compound libraries. TS-984 is a potent blocker of the interaction between the S-protein and ACE2, which might have the potential to be developed into an effective anti-coronavirus drug.


Asunto(s)
COVID-19
3.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.12.14.472545

RESUMEN

ABSTRACT The outbreak of SARS-CoV-2 continues to pose a serious threat to human health and social and economic stability. In this study, we established an anti-coronavirus drug screening platform based on the Homogeneous Time Resolved Fluorescence (HTRF) technology and the interaction between the coronavirus S protein and its host receptor ACE2. This platform is a rapid, sensitive, specific, and high throughput system. With this platform, we screened two compound libraries of 2,864 molecules and identified three potential anti-coronavirus compounds: tannic acid (TA), TS-1276 (anthraquinone), and TS-984 (9-Methoxycanthin-6-one). Our in vitro validation experiments indicated that TS-984 strongly inhibits the interaction of the coronavirus S-protein and the human cell ACE2 receptor. This data suggests that TS-984 is a potent blocker of the interaction between the S-protein and ACE2, which might have the potential to be developed into an effective anti-coronavirus drug. SIGNIFICANCE The ongoing pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a serious threat to public health worldwide. Given the urgency of the situation, researchers are attempting to repurpose existing drugs for treating COVID-19. In this present study, we screened two compound libraries of 2,864 molecules and identified a potent inhibitor (TS-984) for blocking the coronavirus S-protein and the human cell ACE2 receptor. TS-984 might have the potential to be developed into an effective anti-coronavirus drug for treating COVID-19.


Asunto(s)
Infecciones por Coronavirus , Síndrome de Tourette , COVID-19
4.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.03.16.993386

RESUMEN

A novel coronavirus (2019-nCoV) outbreak has caused a global pandemic resulting in tens of thousands of infections and thousands of deaths worldwide. The RNA-dependent RNA polymerase (RdRp, also named nsp12), which catalyzes the synthesis of viral RNA, is a key component of coronaviral replication/transcription machinery and appears to be a primary target for the antiviral drug, remdesivir. Here we report the cryo-EM structure of 2019-nCoV full-length nsp12 in complex with cofactors nsp7 and nsp8 at a resolution of 2.9-[A]. Additional to the conserved architecture of the polymerase core of the viral polymerase family and a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain featured in coronaviral RdRp, nsp12 possesses a newly identified {beta}-hairpin domain at its N-terminal. Key residues for viral replication and transcription are observed. A comparative analysis to show how remdesivir binds to this polymerase is also provided. This structure provides insight into the central component of coronaviral replication/transcription machinery and sheds light on the design of new antiviral therapeutics targeting viral RdRp. One Sentence SummaryStructure of 2019-nCov RNA polymerase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA